106,914 research outputs found

    Cigarette Use and Striatal Dopamine D2/3 Receptors: Possible Role in the Link between Smoking and Nicotine Dependence.

    Get PDF
    BackgroundCigarette smoking induces dopamine release in the striatum, and smoking- or nicotine-induced ventral striatal dopamine release is correlated with nicotine dependence. Smokers also exhibit lower dopamine D2/3 receptor availability in the dorsal striatum than nonsmokers. Negative correlations of striatal dopamine D2/3 receptor availability with smoking exposure and nicotine dependence, therefore, might be expected but have not been tested.MethodsTwenty smokers had positron emission tomography scans with [18F]fallypride to measure dopamine D2/3 receptor availability in ventral and dorsal regions of the striatum and provided self-report measures of recent and lifetime smoking and of nicotine dependence.ResultsAs reported before, lifetime smoking was correlated with nicotine dependence. New findings were that ventral striatal dopamine D2/3 receptor availability was negatively correlated with recent and lifetime smoking and also with nicotine dependence.ConclusionThe results suggest an effect of smoking on ventral striatal D2/3 dopamine receptors that may contribute to nicotine dependence

    Dystonia: sparse synapses for D2 receptors in striatum of a DYT1 knock-out mouse model

    Get PDF
    Dystonia pathophysiology has been partly linked to downregulation and dysfunction of dopamine D2 receptors in striatum. We aimed to investigate the possible morpho-structural correlates of D2 receptor downregulation in the striatum of a DYT1 Tor1a mouse model. Adult control Tor1a+/+ and mutant Tor1a+/− mice were used. The brains were perfused and free-floating sections of basal ganglia were incubated with polyclonal anti-D2 antibody, followed by secondary immune-fluorescent antibody. Confocal microscopy was used to detect immune-fluorescent signals. The same primary antibody was used to evaluate D2 receptor expression by western blot. The D2 receptor immune-fluorescence appeared circumscribed in small disks (~0.3–0.5 ÎŒm diameter), likely representing D2 synapse aggregates, densely distributed in the striatum of Tor1a+/+ mice. In the Tor1a+/− mice the D2 aggregates were significantly smaller (ÎŒm2 2.4 ± SE 0.16, compared to ÎŒm2 6.73 ± SE 3.41 in Tor1a+/+) and sparse, with ~30% less number per microscopic field, value correspondent to the amount of reduced D2 expression in western blotting analysis. In DYT1 mutant mice the sparse and small D2 synapses in the striatum may be insufficient to “gate” the amount of presynaptic dopamine release diffusing in peri-synaptic space, and this consequently may result in a timing and spatially larger nonselective sphere of influence of dopamine action

    Striatal dopamine D2 receptor binding of risperidone in schizophrenic patients as assessed by 123I-iodobenzamide SPECT: a comparative study with olanzapine

    Get PDF
    The aim of this investigation was to compare the degree of striatal dopamine-(D2) receptor blockade by two atypical antipsychotic drugs, risperidone and olanzapine. The percentage of D2 receptor occupancy during treatment was calculated by comparing the results of 123I-iodobenzamide SPECT with those from healthy control subjects. Twenty inpatients suffering from schizophrenia or schizoaffective psychosis according to DSM IV/ICD-10 criteria were treated with clinically recommended doses of risperidone and compared with 13 inpatients treated with up to 20 mg olanzapine. Neuroleptic dose and D2 receptor blockade correlated strongly for both risperidone (Pearson r = –0.86, p = 0.0001) and olanzapine (Pearson r = –0.77, p = 0.002). There was no significant difference between the D2 receptor occupancy of the two substances when given in the clinically recommended dose range (unpaired t-test, t= –0.112, p=0.911)

    Relationship of Alexithymia Ratings to Dopamine D2-type Receptors in Anterior Cingulate and Insula of Healthy Control Subjects but Not Methamphetamine-Dependent Individuals.

    Get PDF
    BackgroundIndividuals with substance-use disorders exhibit emotional problems, including deficits in emotion recognition and processing, and this class of disorders also has been linked to deficits in dopaminergic markers in the brain. Because associations between these phenomena have not been explored, we compared a group of recently abstinent methamphetamine-dependent individuals (n=23) with a healthy-control group (n=17) on dopamine D2-type receptor availability, measured using positron emission tomography with [(18)F]fallypride.MethodsThe anterior cingulate and anterior insular cortices were selected as the brain regions of interest, because they receive dopaminergic innervation and are thought to be involved in emotion awareness and processing. The Toronto Alexithymia Scale, which includes items that assess difficulty in identifying and describing feelings as well as externally oriented thinking, was administered, and the scores were tested for association with D2-type receptor availability.ResultsRelative to controls, methamphetamine-dependent individuals showed higher alexithymia scores, reporting difficulty in identifying feelings. The groups did not differ in D2-type receptor availability in the anterior cingulate or anterior insular cortices, but a significant interaction between group and D2-type receptor availability in both regions, on self-report score, reflected significant positive correlations in the control group (higher receptor availability linked to higher alexithymia) but nonsignificant, negative correlations (lower receptor availability linked to higher alexithymia) in methamphetamine-dependent subjects.ConclusionsThe results suggest that neurotransmission through D2-type receptors in the anterior cingulate and anterior insular cortices influences capacity of emotion processing in healthy people but that this association is absent in individuals with methamphetamine dependence

    Low Dopamine D2/D3 Receptor Availability is Associated with Steep Discounting of Delayed Rewards in Methamphetamine Dependence.

    Get PDF
    BackgroundIndividuals with substance use disorders typically exhibit a predilection toward instant gratification with apparent disregard for the future consequences of their actions. Indirect evidence suggests that low dopamine D2-type receptor availability in the striatum contributes to the propensity of these individuals to sacrifice long-term goals for short-term gain; however, this possibility has not been tested directly. We investigated whether striatal D2/D3 receptor availability is negatively correlated with the preference for smaller, more immediate rewards over larger, delayed alternatives among research participants who met DSM-IV criteria for methamphetamine (MA) dependence.MethodsFifty-four adults (n = 27 each: MA-dependent, non-user controls) completed the Kirby Monetary Choice Questionnaire, and underwent positron emission tomography scanning with [(18)F]fallypride.ResultsMA users displayed steeper temporal discounting (p = 0.030) and lower striatal D2/D3 receptor availability (p < 0.0005) than controls. Discount rate was negatively correlated with striatal D2/D3 receptor availability, with the relationship reaching statistical significance in the combined sample (r = -0.291, p = 0.016) and among MA users alone (r = -0.342, p = 0.041), but not among controls alone (r = -0.179, p = 0.185); the slopes did not differ significantly between MA users and controls (p = 0.5).ConclusionsThese results provide the first direct evidence of a link between deficient D2/D3 receptor availability and steep temporal discounting. This finding fits with reports that low striatal D2/D3 receptor availability is associated with a higher risk of relapse among stimulant users, and may help to explain why some individuals choose to continue using drugs despite knowledge of their eventual negative consequences. Future research directions and therapeutic implications are discussed

    Role of dopamine D1-like receptors in methamphetamine locomotor responses of D2 receptor knockout mice

    Get PDF
    Behavioral sensitization to psychostimulants manifests as an increased locomotor response with repeated administration. Dopamine systems are accepted to play a fundamental role in sensitization, but the role of specific dopamine receptor subtypes has not been completely defined. This study used the combination of dopamine D2 receptor-deficient mice and a D1-like antagonist to examine dopamine D1 and D2 receptor involvement in acute and sensitized locomotor responses to methamphetamine. Absence of the dopamine D2 receptor resulted in attenuation of the acute stimulant effects of methamphetamine. Mutant and wild-type mice exhibited sensitization that lasted longer within the time period of the challenge test in the mutant animals. Pretreatment with the D1-like receptor antagonist SCH 23390 produced more potent reductions in the acute and sensitized locomotor responses to methamphetamine in D2 receptor-deficient mice than in wild-type mice; however, the expression of locomotor sensitization when challenged with methamphetamine alone was equivalently attenuated by previous treatment with SCH 23390. These data suggest that dopamine D2 receptors play a key role in the acute stimulant and sensitizing effects of methamphetamine and act in concert with D1-like receptors to influence the acquisition of methamphetamine-induced behavioral sensitization, traits that may influence continued methamphetamine use.Fil: Kelly, M. A.. Oregon Health And Science University; Estados UnidosFil: Low, M. J.. Oregon Health And Science University; Estados UnidosFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Phillips, T. J.. Oregon Health And Science University; Estados Unido

    Probing the role of the cation–π interaction in the binding sites of GPCRs using unnatural amino acids

    Get PDF
    We describe a general application of the nonsense suppression methodology for unnatural amino acid incorporation to probe drug–receptor interactions in functional G protein-coupled receptors (GPCRs), evaluating the binding sites of both the M2 muscarinic acetylcholine receptor and the D2 dopamine receptor. Receptors were expressed in Xenopus oocytes, and activation of a G protein-coupled, inward-rectifying K^+ channel (GIRK) provided, after optimization of conditions, a quantitative readout of receptor function. A number of aromatic amino acids thought to be near the agonist-binding site were evaluated. Incorporation of a series of fluorinated tryptophan derivatives at W6.48 of the D2 receptor establishes a cation–π interaction between the agonist dopamine and W6.48, suggesting a reorientation of W6.48 on agonist binding, consistent with proposed “rotamer switch” models. Interestingly, no comparable cation–π interaction was found at the aligning residue in the M2 receptor

    Genetic Factors in the Regulation of Striatal and Extrastriatal Dopamine D2 Receptor Expression

    Get PDF
    Positron emission tomography (PET) studies on healthy individuals have revealed a marked interindividual variability in striatal dopamine D2 receptor density that can be partly accounted for by genetic factors. The examination of the extrastriatal lowdensity D2 receptor populations has been impeded by the lack of suitable tracers. However, the quantification of these D2 receptor populations is now feasible with recently developed PET radioligands. The objective of this thesis was to study brain neurobiological correlates of common functional genetic variants residing in candidate genes relevant for D2 receptor functioning. For this purpose, healthy subjects were studied with PET imaging using [11C]raclopride and [11C]FLB457 as radioligands. The candidate genes examined in this work were the human D2 receptor gene (DRD2) and the catechol-Omethyltransferase gene (COMT). The region-specific genotypic influences were explored by comparing D2 receptor binding properties in the striatum, the cortex and the thalamus. As an additional study objective, the relationship between cortical D2 receptor density and a cognitive phenotype i.e. verbal memory and learning was assessed. The main finding of this study was that DRD2 C957T genotype altered markedly D2 receptor density in the cortex and the thalamus whereas in the striatum the C957T genotype affected D2 receptor affinity, but not density. Furthermore, the A1 allele of the DRD2-related TaqIA polymorphism showed increased cortical and thalamic D2 receptor density, but had the opposite effect on striatal D2 receptor density. The DRD2 –141C Ins/Del or the COMT Val158Met genotypes did not change D2 receptor binding properties. Finally, unlike previously reported, cortical D2 receptor density did not show any significant correlation with verbal memory function. The results of this study suggest that the C957T and the TaqIA genotypes have region-specific neurobiological correlates in brain dopamine D2 receptor availability in vivo. The biological mechanisms underlying these findings are unclear, but they may be related to the region-specific regulation of dopamine neurotranssion, gene/receptor expression and epigenesis. These findings contribute to the understanding of the genetic regulation of dopamine and D2 receptor-related brain functions in vivo in man. In addition, the results provide potentially useful endophenotypes for genetic research on psychiatric and neurological disorders.Siirretty Doriast
    • 

    corecore